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COMMENTARY

Vinculin-p130Cas interaction is critical for focal adhesion dynamics
and mechano-transduction
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Abstract

Adherent cells, when mechanically stressed, show a wide range of responses including large-scale changes in their mechanical
behaviour and gene expression pattern. This is in part facilitated by activating the focal adhesion (FA) protein p130Cas through
force-induced conformational changes that lead to the phosphorylation by src family kinases. Janostiak et al. [Janostiak et al. Cell
Mol Life Sci (2013) DOI 10.1007/s00018-013-1450-x] have reported that the phosphorylation site Y12 on the SH3 domain of
p130Cas modulates the binding with vinculin, a prominent mechano-coupling protein in FAs. Tension changes in FAs (due to
the anchorage of the SH3 domain and C-terminal) bring about an extension of the substrate domain of p130Cas by unmasking
the phosphorylation sites. These observations demonstrate that vinculin is an important modulator of the p130Cas-mediated
mechano-transduction pathway in cells. The central aim should be now to test that vinculin is critical for p130Cas incorporation
into the focal adhesion complex and for transmitting forces to the p130Cas molecule.
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Integrin-associated focal adhesions (FAs) are the main
cellular structure for cell adhesion. They consist of several
hundred different proteins (Zaidel-Bar et al., 2007) that
together, critically influence a large number of integrin-
mediated cell signalling events such as cell survival and
proliferation, contraction, migration and differentiation. By
far the most important factor that determines integrin-
mediated cell signalling is the mechanical environment of the
cell, namely its adhesiveness, stiffness, topology and strain
fluctuations. Consequently, an understanding of the molec-
ular processes that enable cells to sense their mechanical
environment is of great interest (Goldmann, 2002, 2012a, b;
Goldmann et al., 2013).

One of the most prominently discussed mechano-sensing
molecules is p130Cas. Originally described as a crk-associated
substrate, p130Cas is a member of the FA scaffold protein
family (Nakamoto et al., 1997; Honda et al., 1999; Defilippi et
al., 2006; Thompson et al., 2009). p130Cas is a multi-domain
protein (Nasertorabi et al., 2004) that interacts with focal
adhesion kinase (FAK) (Polte and Hanks, 1995; Harte et al.,
1996), Pyk2 (Birge et al., 2009) and several other proteins,
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including FRNK, RapGEF1, Aurora kinase A, PI3K, NMP4,
NCKI1 and SHIP2 and NSP (Chen et al., 1995; Liu et al., 1996;
Pratt et al., 2005; Roselli et al., 2010; Mace et al., 2011), that
has been reviewed by Cabodi et al. (2010) (Figure 1).

The current working model of how extracellular and
intracellular (contractile) mechanical stimuli are thought to
be transmitted to p130Cas is that: (i) forces are sent out from
two ‘handles’ of p130Cas that lead to protein stretching, and
(ii) stretching of p130Cas opens up cryptic binding sites on
the substrate binding domain (SBD) to enable the docking
and activation of non-receptor tyrosine kinases of the src and
crk family (Parsons and Parsons, 1997; Abram and Court-
neidge, 2000). This is followed by the successive phosphory-
lation of the substrate domain (SD) of p130Cas (Polte and
Hanks, 1995; Sawada et al., 2006), which in turn activates
downstream signalling, including the mitogen activated
protein (MAP) kinase cascade (Goldberg et al., 2003),
activation of small GTPase proteins (Sawada et al., 2001,
2006; Sawada and Sheetz, 2002), and tyrosine phosphoryla-
tion of several other adhesion proteins (Giannone and Sheetz,
2006). In agreement with this working model, p130Cas is in a
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Figure 1 A modified schematic representation of the adaptor protein p130Cas which consists of a well-known FAT-domain, substrate
binding domain, a 14-3-3 protein and tyrosine binding domain as well as a SH3 domain. The role of the SH3 domain of p130CAS as a docking

molecule, which is involved in numerous protein—protein interactions, is
binding and opens up phosphorylation sites.

phosphorylated state in highly invasive cells (Cowell et al.,
2006; Schuh et al., 2010). Moreover, cells transformed with
v-src and v-crk have increased p130Cas phosphorylation and
invasiveness in a 3-D culture system (Brabek et al.,, 2004,
2005).

There are conceptual problems, however, with this
working model. For p130Cas to be stretched, the mechanical
forces need to be transmitted to the p130Cas molecule on two
distant sites, namely via FAK, Pyk2 and other proteins on the
SH3-domain near the N-terminus ‘first handle’, and via other
as yet unspecified FA proteins that bind to the focal adhesion
targeting region (FAT) of p130Cas near the C-terminus
‘second handle’ Whether FAK, Pyk2 and other proteins can
act as a mechano-coupling and force-transmitting protein,
however, remains unknown. Similarly, the list of plausible
candidates for the other mechano-coupler near the
C-terminus has not been narrowed down by clear experi-
mental evidence.

A possible candidate for the missing p130Cas binding
partner proposed by Janostiak et al. (2011) is vinculin. This
idea is supported by reports of co-localisation of p130Cas and
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well established (Cabodi et al., 2010). Stretching the molecule allows protein

vinculin (Nakamoto et al., 1997). Vinculin, as a dominant
and abundant FA protein (Burridge and Feramisco, 1980;
Eimer et al., 1993) binds to talin, alpha-actinin, actin and
several other neck binding proteins (Burridge and Feramisco,
1980). It recruits paxillin to enhance integrin clustering
(Humphries et al., 2007) and is a major mechano-coupling/
regulating protein within the FA complex (Goldmann et al.,
1995, 1998; Goldmann and Ezzell, 1996; Ezzell et al., 1997).

Proof of p130Cas-vinculin binding has now come from
Janostiak et al. (2013) introducing point mutations on the
SH3 domain of p130Cas at position 12 and vinculin’s neck
region at position 861-4. Changing wildtype p130Cas 12Y to
12F or 12E in mouse embryonic fibroblasts (MEFs) and
studying the location of these mutant proteins by fluores-
cence imaging using antibodies for p130Cas variants and
vinculin, they have shown that the wildtype and 12F mutant
co-localise in FAs, whereas the 12E variant does not. To test
whether vinculin binding is necessary for mechanical
activation of pl130Cas, Janostiak et al. (2013) cultured
MEFs on a flexible PDMS substrate and exposed the cells to
stretch by a cell stretcher. There was no increase in
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phosphorylation of p130Cas at position Y410 and ERK1/2 in
Vin—/— and FAK—/— cells, whereas in wildtype cells
p130Cas(Y410) and pERK1/2 phosphorylation was increased
compared to unstretched conditions. Since binding of
p130Cas to FAK or vinculin is required for localisation of
p130Cas at the FA sites, they hypothesised that the stretch-
induced phosphorylation of p130Cas at Y410 also requires
proper localisation of p130Cas in FAs. They could demon-
strate that the constitutively phospho-mimicking (i.e.
vinculin binding deficient) 12E p130Cas mutant showed
no detectible activation. In contrast, the non-phosphoryla-
tible Y12F p130Cas mutant (with strong vinculin and FAK
binding) increased stretch activation.

Janostiak et al. (2013) speculated that cells with impaired
p130Cas-mediated mechano-chemical signalling may show
reduced FA reinforcement, and consequently reduced
stiffness and increased cytoskeletal fluidity. To test this
hypothesis, they determined how cells deform under external
force using magnetic tweezers. The cell stiffness was lower in
the phospho-mimicking (Y12E) p130Cas mutants where it
was poorly associated with FAs, and the cell fluidity was
highest. The lower stiffness suggests that these cells have a
lower contractile pre-stress, as confirmed by traction
microscopy.

To ensure that lower traction forces of the phospho-
mimicking mutants are not caused by diminished adhesion
strength, they ramped up the force of the magnetic tweezers
until the integrin-bound beads detached from the cells.
Repeating this for hundreds of cells gives a probability that
the adhesions break at a given force, and thus is a quantitative
measure of adhesion strength. The bead detachment (i.e.
binding strength) probabilities are not markedly different
between the wildtype and p130Cas mutant cells. Therefore,
the reduced traction forces that they observed in the
phospho-mimicking 12E mutants are not caused by poor
adhesion, but are probably due to diminished contractile
activation.

In summary, data from Janostiak et al. (2013) confirm that:
(i) p130Cas interacts with vinculin in a FAK-independent
manner, (ii) vinculin is necessary for stretch-activation of
p130Cas and ERK1/2 phosphorylation, (iii) binding to
vinculin is regulated by pl130Cas phosphorylation on
position 12, and (iv) the Y12E (phospho-mimicking) mutant
prevents p130Cas stretch-activation, increases FA turnover,
decreases FA size but not adhesion strength, increases cell
migration and cell fluidity, and reduces cell stiffness and
tractions. These observations show that vinculin is probably
the ‘first handle’ and an important modulator of the
p130Cas-mediated mechano-transduction pathway in cells.

Future work has to address the ‘second handle at the C-
terminal end through which p130Cas mechanically couples
to partner proteins (the ‘first handle’ at the N-terminal end of
p130Cas being the SH3-domain). Sawada et al. (2006)
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suggest that in order for the p130Cas molecule to open up,
that is to act as a mechano-sensor, the SBD must be targeted
to FAs. However, other studies contradict this assumption
(Harte et al., 2000; Donato et al., 2010). Donato et al. (2010)
showed that the C-terminal homology (CCH) domain is
necessary for proper targeting of p130Cas to FAs. Their
results suggest that the C-terminal CCH-region is also the
‘second handle’ for coupling forces to p130Cas to ensure its
mechano-sensing function.
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